Additive Category
   HOME

TheInfoList



OR:

In mathematics, specifically in category theory, an additive category is a
preadditive category In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-category C is a category such that every hom- ...
 C admitting all
finitary In mathematics and logic, an operation is finitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values. In standard mathematics, an operation ...
biproduct In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide fo ...
s.


Definition

A category C is preadditive if all its
hom-set In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s are
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s and composition of morphisms is bilinear; in other words, C is enriched over the
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left a ...
of abelian groups. In a preadditive category, every finitary
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
(including the empty product, i.e., a
final object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
) is necessarily a
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduc ...
(or
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
in the case of an empty diagram), and hence a
biproduct In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide fo ...
, and conversely every finitary coproduct is necessarily a product (this is a consequence of the definition, not a part of it). Thus an additive category is equivalently described as a preadditive category admitting all finitary products, or a preadditive category admitting all finitary coproducts. Another, yet equivalent, way to define an additive category is a category (not assumed to be preadditive) that has a
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
, finite coproducts and finite products, and such that the canonical map from the coproduct to the product :X \coprod Y \to X \prod Y is an isomorphism. This isomorphism can be used to equip \mathrm(X,Y) with a commutative
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
structure. The last requirement is that this is in fact an abelian group. Unlike the aforementioned definitions, this definition does not need the auxiliary additive group structure on the Hom sets as a datum, but rather as a property. Note that the empty biproduct is necessarily a
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
in the category, and a category admitting all finitary biproducts is often called semiadditive. As shown below, every semiadditive category has a natural addition, and so we can alternatively define an additive category to be a semiadditive category having the property that every morphism has an additive inverse.


Generalization

More generally, one also considers additive -linear categories for a commutative ring . These are categories enriched over the monoidal category of -modules and admitting all finitary biproducts.


Examples

The original example of an additive category is the category of abelian groups Ab. The zero object is the
trivial group In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usuall ...
, the addition of morphisms is given
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
, and biproducts are given by direct sums. More generally, every
module category In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring ...
over a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
  is additive, and so in particular, the
category of vector spaces In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring ...
over a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
  is additive. The algebra of
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
over a ring, thought of as a category as described below, is also additive.


Internal characterisation of the addition law

Let C be a semiadditive category, so a category having all finitary biproducts. Then every hom-set has an addition, endowing it with the structure of an
abelian monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ar ...
, and such that the composition of morphisms is bilinear. Moreover, if C is additive, then the two additions on hom-sets must agree. In particular, a semiadditive category is additive if and only if every morphism has an additive inverse. This shows that the addition law for an additive category is ''internal'' to that category. To define the addition law, we will use the convention that for a biproduct, ''p''k will denote the projection morphisms, and ''i''k will denote the injection morphisms. For each object , we define the: * the ''diagonal morphism'' by ; * the ''codiagonal morphism'' by . Then, for , we have and . Next, given two morphisms , there exists a unique morphism such that equals if , and 0 otherwise. We can therefore define . This addition is both commutative and associative. The associativity can be seen by considering the composition :A\ \xrightarrow\ A \oplus A \oplus A\ \xrightarrow\ B \oplus B \oplus B\ \xrightarrow\ B We have , using that . It is also bilinear, using for example that and that . We remark that for a biproduct we have . Using this, we can represent any morphism as a matrix.


Matrix representation of morphisms

Given objects and in an additive category, we can represent morphisms as -by-
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
: \begin f_ & f_ & \cdots & f_ \\ f_ & f_ & \cdots & f_ \\ \vdots & \vdots & \cdots & \vdots \\ f_ & f_ & \cdots & f_ \end where f_ := p_k\circ f \circ i_l\colon A_l\to B_k. Using that , it follows that addition and composition of matrices obey the usual rules for
matrix addition In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. However, there are other operations which could also be considered addition for matrices, such as the direct sum and the Kroneck ...
and
matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
. Thus additive categories can be seen as the most general context in which the algebra of matrices makes sense. Recall that the morphisms from a single object  to itself form the
endomorphism ring In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in a ...
 . If we denote the -fold product of  with itself by , then morphisms from to are ''m''-by-''n'' matrices with entries from the ring . Conversely, given any
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
 , we can form a category  by taking objects ''A''''n'' indexed by the set of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
s (including
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
) and letting the
hom-set In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
of morphisms from to be the
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of -by- matrices over , and where composition is given by matrix multiplication. Then is an additive category, and equals the -fold power . This construction should be compared with the result that a ring is a preadditive category with just one object, shown
here Here is an adverb that means "in, on, or at this place". It may also refer to: Software * Here Technologies, a mapping company * Here WeGo (formerly Here Maps), a mobile app and map website by Here Technologies, Here Television * Here TV (form ...
. If we interpret the object as the left
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Mo ...
 , then this ''matrix category'' becomes a subcategory of the category of left modules over . This may be confusing in the special case where or is zero, because we usually don't think of matrices with 0 rows or 0 columns. This concept makes sense, however: such matrices have no entries and so are completely determined by their size. While these matrices are rather degenerate, they do need to be included to get an additive category, since an additive category must have a zero object. Thinking about such matrices can be useful in one way, though: they highlight the fact that given any objects and in an additive category, there is exactly one morphism from to 0 (just as there is exactly one 0-by-1 matrix with entries in ) and exactly one morphism from 0 to (just as there is exactly one 1-by-0 matrix with entries in ) – this is just what it means to say that 0 is a zero object. Furthermore, the zero morphism from to is the composition of these morphisms, as can be calculated by multiplying the degenerate matrices.


Additive functors

A functor between preadditive categories is ''additive'' if it is an abelian
group homomorphism In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) w ...
on each
hom-set In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
in C. If the categories are additive, then a functor is additive if and only if it preserves all
biproduct In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide fo ...
diagrams. That is, if is a biproduct of  in C with projection morphisms and injection morphisms , then should be a biproduct of  in D with projection morphisms and injection morphisms . Almost all functors studied between additive categories are additive. In fact, it is a theorem that all
adjoint functor In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
s between additive categories must be additive functors (see
here Here is an adverb that means "in, on, or at this place". It may also refer to: Software * Here Technologies, a mapping company * Here WeGo (formerly Here Maps), a mobile app and map website by Here Technologies, Here Television * Here TV (form ...
), and most interesting functors studied in all of category theory are adjoints.


Generalization

When considering functors between -linear additive categories, one usually restricts to -linear functors, so those functors giving an -module homomorphism on each hom-set.


Special cases

* A ''
pre-abelian category In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels. Spelled out in more detail, this means that a category C is pre-abelian if: # C is preadditive, that is enric ...
'' is an additive category in which every morphism has a
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learn ...
and a
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
. * An ''
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of ...
'' is a pre-abelian category such that every
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
and
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
is
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
. Many commonly studied additive categories are in fact abelian categories; for example, Ab is an abelian category. The free abelian groups provide an example of a category that is additive but not abelian..


References

{{reflist, 1 *
Nicolae Popescu Nicolae Popescu (; 22 September 1937 – 29 July 2010) was a Romanian mathematician and professor at the University of Bucharest. He also held a research position at the Institute of Mathematics of the Romanian Academy, and was elected corresp ...
; 1973; ''Abelian Categories with Applications to Rings and Modules''; Academic Press, Inc. (out of print) goes over all of this very slowly